Prof. Dr. A. Duran Türkoğlu

Fen Fakültesi > Matematik

 

 AKADEMİK YAYINLAR

C. SCI, SCI-EXP., TARAFINDAN TARANAN BİLİMSEL DERGİLERDE YAPILAN YAYIN

C1. B. Fisher and D. Türkoğlu, Related Fixed Points For Two Pairs Of Set Valued Mappings On Two Metric Spaces,  Fixed Point Theory and Applications, 3, 63-70, (2002).

C2. D. Türkoğlu, O. Özer and B. Fisher, A Coincidence Point Theorem For Multi-valued Contractions, Math. Commun., 7, 39-44, (2002).

C3. D. Türkoğlu and B. Fisher, Fixed Point Of Multivalued Mapping In Uniform Spaces,  Proc. Indian Acad. Sci. (Math. Sci.), 113, 183-187, (2003).

C4. D. Türkoğlu, Fixed Point Theorems On Uniform Spaces, Indian J. Pure Appl. Math., 34(3), 453-459, ( 2003 ).

C5. D. Türkoğlu and B. E. Rhoades, A fixed fuzzy point for fuzzy mapping in complete metric spaces, Math. Commun., 10, 2, 115-121, (2005).

C6. İ. Altun, H. A. Hançer and D. Türkoğlu, A Fixed Point Theorem Tor Multi-maps Satisfying An Implicit Relation On Metrically Convex Metric Spaces, Math. Commun., 11, 17-23, (2006).

C7. C. Alaca, D. Türkoğlu and C. Yıldız, Fixed Points In Intuitionistic Fuzzy Metric Spaces, Chaos, Solitons & Fractals, 29, 1073-1078 (2006).

C8. D. Türkoğlu and İ. Altun, A fixed point theorem for multi-valued mappings and its applications to integral inclusions, Appl. Math. Lett., 20 ( 2007 ) 563-570.

C9. S. Kütükçü, C. Yıldız and D. Türkoğlu, Fixed points of contractive mappings in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl., 9 (2) (2007), 181-193.

C10. S. Sedghi, D. Türkoğlu and N. Shobe, Generalization common fixed point theorem in complete fuzzy metric spaces, J. Comput. Anal. Appl., 9 (3) (2007), 337-348.

C11. İ. Altun and D. Türkoğlu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput. Anal. Appl., 9 (1) (2007), 9-14.

C12. İ. Altun, D. Türkoğlu and B.E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory and Appl, Volume 2007, Article ID 17301, 9 pages doi:10.1155/2007/17301.

C13. D. Turkoglu and I. Altun, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying an implicit relation, Bul. de la Soc. Math. Mexicana, 13 (1) (2007), 195-205.

C14. İ. Altun and D. Türkoğlu, Some fixed point theorems for weakly compatible multivalued mappings satisfying an implicit relation, Filomat, 22 (1) ( 2008 ) 11-19.

      C15. D. Türkoğlu, Two general fixed point theorems on three complete metric

       spaces, J. Comput. Anal. Appl,   10 (2) 173-178 ( 2008).

C16. D. Türkoğlu and B. E. Rhoades, A General Fixed Point Theorem for Multi-valued Mapping in Uniform Space, Rocky Mountain J. Math., Vol 38, no 2, (2008) 639-647.

 

C17. D. Turkoglu, Some Fixed Point Theorems for Hybrid Contractions in Uniform Space, Taiwanese J. Math., 12 (3) (2008), 807-820 . 

 

C18. İ. Altun, H. A. Hancer and D. Türkoğlu, Fixed point theorems on d-complete topological spaces,   Carpathian Journal of Mathematics, 24 (1) (2008), 1-7.

C19. İ. Altun, D. Türkoglu, Some fixed point theorems for multivalued weakly uniform increasing operators, Rendiconti del Seminario Matematico della Università di Padova, 120 (2008) 217-226.

C20. D. Türkoglu, Two general fixed point theorems on three complete uniform spaces, J. Comput. Anal. Appl, 11(1) (2009) 86-92.

C21. İ. Altun and D. Türkoğlu,  Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math., 13 ( 2009), 1291.

C22. D. Türkoğlu, Some common fixed point theorems for weakly compatible

            mappings in uniform space, Acta Mathematica Hungar.  26 3 (2010) 489-496,

      C23. D. Turkoglu, M Abuloha, T. Abdeljawad, KKM mappings in cone metric

spaces and some fixed point theorems, Nonlinear Analysis 72 (2010) 348-353.

      C24. D. Turkoglu, M. Abuloha, Cone Metric Spaces  and Fixed Point Theorems in

Diametrically Contractive Mappings,  Acta Math. Sinica, Eng Series. 26, 3(2010) 489-496.

C25. Thabet Abdeljawad, Duran Türkoglu, Muhib Abuloha, Some theorems and examples of cone Banach spaces, J. Comput. Anal. Appl,  12, 2, 739-753 (2010).

 

C26. İ Altun and D Türkoglu, Some fixed point theorem for weakly compatible multivalued mappings satisfying some general contractive condition of integral type,  Bulletion of the Iranian Mathematical Society, 36, 1, 55-67 (2010).

 

C27. Erdal Karapınar and Duran Türkoğlu, Best approximations theorem for a couple in cone Banach space, Fixed point theory and applications, ID 784578, doi:10.1155 (2010) 9 Pages.

C28. Duran Turkoglu and Muhib Abuloha, Fixed points of mappings satisfying a new condition in cone metric spaces, J. Comput. Anal. Appl., 13, 5, 963-970 (2011).

C29. Duran Turkoglu and Demet Binbasıoğlu, Some fixed point theorems for multivalued monotone mappins in ordered uniform spaces, Fixed point theory and applications, (2011).

C30. İ. Altun, D. Türkoğlu, An existence theorem for the common solution for a pair of integral inclusions, Dynamics of Continuous, Discrete and Impulsive Systems Ser. A Math. Anal. 18, 1, 135-147 (2011).

C31. D. Türkoğlu, M. Abuloha and T. Abdeljawad,  Fixed point of generalized contraction mappings in cone metric spaces, Math. commun., 16, 325-334 (2011).

C32. T. Abdeljawad and D. Türkoğlu, Locally convex valued rentangular metric spaces and the Kannan’s fixed point theorem, J. Comput. Anal. Appl. 14, 3,  484-494 (2012).

C33. I. Erhan, E. Karapınar and D. Türkoğlu, Different types Meir-Keeler contractions on partial metric, J. Comput. Anal. Appl. 14, 6, 1000-1005 (2012).

C34. D. Türkoğlu and V. Öztürk, Common fixed point results for four mappings on partial metric space, Abstract and Applied Anal. (2012).

     C35. H. Işık and D. Turkoglu, Fixed point theorems for weakly contractive mappings in partially ordered metric-like spaces, Fixed point Theory and Applications, (2013).

     C36. H. Işık and D. Türkoğlu, Common fixed point for ( psi, alpha, beta)- weakly contractive mappings in generalized metric spaces, Fixed point Theory and Applications, (2013).

    C37. İ. Altun and D. Turkoglu, A fixed point theorem for weakly compatible mappings satisfying a general contractive condition of oparator type, Ars Combinatoria, (2013).

   C38. S. Sedghi, N. Shobkolaei and D. Turkoglu, A Common fixed point theorem for multivalued monotone mappings in ordered patial metric spaces. Miskolc Mathematical Notes, 14(245-254), (2013).

   C39. V. Ozturk and D. Turkoglu, Common fixed point of noncommuting almost contractions in generalized metric spaces, (2013).

   C40. N. Bilgili, E. Karapınar and D. Turkoglu, A note on common fixed points for (psi, alfa, beta) weakly contravtive mappings in generalized metric spaces, (2013).

   C41. D.Türkoğlu and M.Sangurlu, Coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces, Fixed point Theory and Applications, (2013).

  C42. M. Abbas and D. Türkoğlu, Fuzzy fixed point theorem for a generalized, Journal of intelligent and Fuzzy Systems, (2014).

  C43. D.Türkoğlu and M.Sangurlu, Fixed point theorem for fuzzy Ψ-contractive mappings in fuzzy metric spaces, Journal of intelligent and Fuzzy Systems, (2014).

   C44. N. Bilgili, I. Erhan, E. Karapınar and D. Türkoğlu A note on ' coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. , (2014).

  C45. Huseyin Işık and Duran Türkoğlu, Coupled fixed point theorems for new contractive mixed monotone mappings and aplications to integral equations. Filomat, (1253-1264), (2014).

  C46. Duran Türkoğlu and Vildan Öztürk , (fi, psi)-weak Contraction on ordered uniform spaces. Filomat, (1265-1269), (2014).

  C47. N. Bilgili, İ. M. Erhan, E. Karapınar and D. Turkoglu,  Cylic conractions and related fixed point theorems on G-metric spaces. Appl. Math. Inf. Sci., (1541-1551), (2014).

  C48. V. Öztürk and D. Türkoğlu, Common fixed point for (fi, psi)- weak contractions on ordered guage spaces and applications, J. Nonlinear convex analysis, 16, 3, 473-483, 2015.

  C49. D.Türkoğlu and D. Binbaşıoğlu, Coupled coincidence point theorems for compitible mappings in ordered uniform space, Miscolc Math. Notes, 16, 1, 527-541, (2015).

  C50. V. Öztürk and D. Türkoğlu, Common fixed point theorem for mappings satsfying (E.A)-property in b-metric spaces, J. Nonlinear Sciences and appl, 8, 6, 1127-1133, (2015).

  C51. M. Sungurlu and D. Türkoğlu, Fixed point theorems for ( psi circle phi)- contractions in fuzzy metric spaces, J. Nonlinear Sciences and appl, 8, 5, 687-694, (2015).

  C52. V. Öztürk and D. Türkoğlu, Fixed points for generalized (alfa-psi)-contractions in b-metric spaces, J. Nonlinear convex Anal. 16, 10, 1-8, (2015).

  C53. D.Binbaşıoğlu, S. Demiriz and D. Türkoğlu, Fixed points of Non-Newtonian contraction mappings on Non-Newtonian metric spaces, J. Fixed Point Theory and Appl.  4, 1-12, (2015)..

 

D. DİĞER İNDEKSLER TARAFINDAN TARANAN DERGİLERDE YAPILAN YAYIN

D1. D. Türkoğlu, Some Fixed Theorems For Compatible Type Set-Valued Mappings, Univ. Din. Bacau.   Şi Cer. Ştii. Math., 7, 167-177, (1997).

D2. V. Popa and D. Türkoğlu, Some Fixed Point Theorems For Hybrid Contractions satisfying An İmplicit relation, Univ. Din. Bacau. Şi Cer. Ştii. Math., 8, 75-86, (1998).

D3. D. Türkoğlu and B. Fisher, Some Fixed Point Theorems For Contractive Type Multivalued Mappings, Univ. Din. Bacau. Şi. Cer. Ştii. Math., 8, 155-164, (1998).

D4. B. Fisher and D. Türkoğlu, Quasi-Contractions On Two Metric Spaces, Rad. Math., 9, 241-249, (1999).

D5. D. Türkoğlu, O. Özer and B. Fisher, Some Fixed Point Theorems For Set-Valued Mappings İn Uniform Spaces, Demonstratio Math., 32, 2, 395-400, (1999).

D6. D. Türkoğlu, O. Özer and B. Fisher, Fixed Point Theorems For T-Orbitally Complete Spaces, Univ. Din. Bacau. Şi. Cer. Ştii. Math., 9, 211-218, (1999).

D7. D. Türkoğlu and B. Fisher, On Some nonexpansive Type Multivalued Mappings  And Fixed Points, Indian J. Math., 343, 3, 317-322, (2001).

D8. B. Fisher and D. Türkoğlu, Related Fixed Points For Set Valued Mappings On Two Metric Spaces, Int. J. Math. Math. Sci., 23, 205-210, (2000).

D9. D. Türkoğlu and B. Fisher, A Generalization of A Fixed Point Theorem Of Ciric, Novi Sad J. Math., 29, 117-121, (1999).

D10. B. Fisher and D. Türkoğlu, Related Fixed Points For Mappings On Complete And Compact Metric Spaces, Nonlinear Anal. Forum, 6, 113-118, (2001).

D11. D. Türkoğlu and B. Fisher, Related Fixed Points For Set Valued Mappings On Two Uniform Spaces, Int. J. Math. Math. Sci., 69, 3783-3791, (2004).

D12. B. Fisher, M. Telci and D. Türkoğlu, On frensel integrals, Makedon. Akad. Nauk. Umet. Oddel. Mat., 23, 57, 2004.

D13. D. Türkoğlu, R. P. Agarwal, D. O'Regan and İ. Altun, Some Fixed Point Theorems For Single Valued And Multivalued Countably Condensing Weakly Uniform Isotone Mappings, Panamer. Math. J., 15 (1), 57-68, (2005).

D14. D. Türkoğlu, İ. Altun and B. Fisher, Fixed Point Theorem For Sequences Of Maps, Demonstratio Math., 38, 2, 461-468, (2005).

D15. D. Türkoğlu, S. Kütükçü and C. Yıldız, Common Fixed Points Of Compatible Maps Of Type α On Fuzzy Metric Spaces, Int. J. Appl. Math., 18, 2, 189-202 (2005).

D16. S. Kütükçü, D. Türkoğlu and C. Yıldız, Common Fixed Points Of Compatible Maps Of Type β On Fuzzy Metric Spaces, Commun. Korean Math. Soc., 21, 1, 89-100, (2006).

D17. D. Türkoğlu, C. Alaca and C. Yıldız, Compatible Maps And Compatible Maps Of Types α and β In Intuitionistic Fuzzy Metric Spaces, Demonstratio Math., 39, 3, 671-684 (2006).

D18. D. Türkoğlu, C. Alaca, Y. J. Cho and C. Yıldız, Common Fixed Point Theorems In Intuitionistic Fuzzy Metric Spaces, J. Appl. Math. Comput., 22, 1-2, 411-424 (2006).

D19. D. Turkoglu, İ. Altun and B. Fisher, Common fixed point theorems for four mappings with some weak conditions of commutativity, Novi Sad J. Math., 36, 1, 75-86 (2006).

D20. D. Türkoğlu, H. Aslan and S. N. Mishra, A Fixed Point Theorem For Multivalued Mappings In Uniform Space, J. Concr. Appl. Math., 5 (4) (2007), 331-336.

D21. S. Kütükçü, D. Türkoğlu and C. Yıldız, A Common Fixed Point Theorem Of Compatible Maps Of Type α In Fuzzy Metric Spaces, J. Concr. Appl. Math., 5 (4) (2007), 347-357.

D22. D. Türkoğlu, İ. Altun and Y. J. Cho, Common Fixed Points Of Compatible Mappings Of Type I and II in Fuzzy Metric Spaces, J. Fuzzy Math., 15 (2) (2007), 435-448.

D23. S. Kütükçü, D. Türkoğlu and C. Yıldız, Some Fixed Point Theorems For Multivalued Mappings In Fuzzy Menger Space, J. Fuzzy Math., 15 (2) ( 2007),  413-424.

D24. İ. Altun and D. Türkoğlu, Fixed point and homotopy result for mappings satisfying an implicit relation, Discuss. Math. Differ. Incl. Control Optim., 27(2007) 349-363.

D25. İ. Atun, D. Türkoğlu, Some fixed point theorems on fuzzy metric spaces with implicit relations,  Commun. Koren Math. Soc. 23 (1) (2008), 11-14.

D26. C. Alaca, D. Türkoğlu and C. Yıldız, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, Southeast Asian Bull. Math., 32 (2008) 21-33.

D27. İ. Altun and D. Türkoğlu, A fixed point theorem on general topological spaces with a t-distance, Indian J. Math., 51 (1) (2008), 219-228.

D28. C. Alaca, İ. Altun, D. Türkoğlu, Common fixed points of compatible maps of type (I) and (II) in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc.  23 (3) (2008), 427-446.

D29. İ. Altun, D. Türkoglu, Some fixed point theorems for multivalued maps satisfying an implicit relation    on metrically convex metric spaces, Kyungpook Math.J., 48 (2008), 367-377.

D30. D. Turkoglu, İ. Altun, Fixed point theorems for multivalued mappings satisfying an implicit relation, Tamkang J. Math. 39 (3), (2008), 247-253.

D31. İ. Altun and D. Türkoğlu, Fixed points of sequences of maps on fuzzy metric spaces, Ital. J. Pure Appl. Math., 24 (2008), 27-34.

D32. D. Türkoğlu and H. Aslan, A fixed point theorem for two pairs of multivalued mappings on two complete uniform spaces, Set-Valued Mathematics and Applications, 1(2) (2008), 183-195.

     D33. S. Sedghi, D. Türkoğlu, N. Shobe, Common Fixed Point of compatible maps

     of Type (γ) on complete Fuzzy Metric Spaces, Commun. Korean Math. Soc.

     24, 4 (2009) 581-594..

D34. İ Altun and D. Türkoğlu, Some fixed point theorems for mapping satisfying contractive condition of integral type on d-complete topological spaces, Fasciculli Mathematici,  42 (2009) 5-15.

D35. D. Türkoğlu, S. Sedghi, N. Shobe, Common fixed point theorem, Novi Sad  J.

      Math. 29, 1 (2009).

D36. S. Sedghi, D. Türkoğlu, N. Shobe, Common Fixed Point Theorems for six weakly compatible mappings in D*-Metric Spaces, . Thai. J. Math.  7, 2 (2009) 381-391.

D37. D. Türkoğlu and N. Bilgili, Some fixed point theorem for mapping on complete G- cone metric spaces, J. Appl. Func. Anal.7, 1-2,  (2012) 118-137.

D38. D. Türkoğlu, M. Abuloha and T. Abdeljawad, Some theorems in cone metric, J. Conc. Appl. Anal., 10, 1-2, (2012) 106-116.

D39. D.Türkoğlu and D. Binbaşıoğlu, Fixed point theorems for generalized contractions in ordered uniform spaces,  J. Appl. Func. Anal.  ( 2012).

D40. D.Türkoğlu and D. Binbaşıoğlu, Some common fixed point theorems for self mappings in metric spaces, Int. Journal of Math. Anayysis, 7, 35, 1735-1742 (2013).

D41. I. Altun and D. Türkoğlu, Some fixed point theorems for multivalued weakly increasing operetors, Ital. J. Pure and Aappl. Math. (2013).

D42. H. Işık and D. Turkoglu,  Some fixed point theorems in partial metric spaces,  J. ineq. special funct., 4(13-18), (2013).

D43. D.Türkoğlu and D. Binbaşıoğlu, Some of fixed point therorems for mappings satisfying an implicit relation in ordered uniform spaces, Asian J. Math. and Computer research,, 4, 109-118, (2015).

D44. H. Işık, S. Chandok, D. Türkoğlu, A.H. Ansari, Common fixed points (psi,F,alfa, beta)- weakly contraction mappings in generalized metric spaces via new functions,  28, GUJS, (2015).

 

 

E.ULUSAL HAKEMLİ VE DİĞER BİLİMSEL DERGİLERDE YAPILAN YAYIN

E1. O. Özer, D. Türkoğlu, Some Fixed Point Theorems For Multivalued Mappings, Anadolu Üniv. Fen. Fak. Dergisi, 4, 83-96, (1998).

 

F. ATIF

 

WEB OF SCİENCE TOPLAM ATIF SAYISI:      300

GOOGLE AKADEMİK TOPLAM ATIF SAYISI:  1200

H-index                                                         :  8

1.Samet, B, Vetro, C, and  Vetro P., Fixed point theorems for a - contractive type mappings, Nonlinear Anal., 75, 4, 2154-2165 (2012).

2.H. Çakallı, Sonmez H, Genç Ç., On an equivalence of topological vector spacevalued  cone metric space and metric space, Appl. Math. letters, 25, 3, 429-433 (2012).

3.I. Altun and A. Erduran, A Suzuki type fixed point theorem, Internat. J. Math. Math. Sci., 9 pages, Doi 736063 (2011).

4.L. Ciric, B. Samet, N. Cakic, B. Damjanovic, Coincidance and fixed point theorems for generalized - weak nonlinear contraction in ordered K-metric spaces, computers and mathematics with applications, 62, (9), 3305-3316 (2011)

5.Aydi H, Nashine H. K, Samet b, et.al., Coincidence and common fixed point results in partically ordered cone metric spaces and applications to integral equations, Nonlinear anal. 74, 17 (2011).

7.N. Hussain and M. H. Shah, KKM mappings in cone b- metric spaces, Computers and Mathematics with applications, 62, 4, 1677-1684 (2011).

8.S. Wang and B. Guo, Distance in cone metric spaces and common fixed point theorems, Appl. Math. Letters, 24, 10, 1735-1739 (2011).

9.M. Filipovic, L. Paunovic, S. Radenovic, M. Rajovic, Remarks on “ cone metric spaces and fixed points theorems on T- Kanan and T- Chatterjea  contractive mappings” Math. comput. Modelling, 54, 1467-1472 (2011).

10.Yasmeen Bano and R. S. Chandel, Common fixed point theorems in intuitionistic -chainable fuzzy metric spaces, Int. Magazine Adv. Comput. Sci. Telecomications, 2 (1) 1-4 (2011).

11.W. Sintunavarat and P. Kumam, Gregus-type common fixed point theorems for Tangential multivalued mappings of integral type in metric spaces, Int. J. Math. Math. Sci., 12, ( 2011).

12.C. T. Aage and J. N. Salunke, Some fixed point theorems for expansion onto mappings on cone metric space, Acta Mat. Sinica, English series, 27, 6, 1101-1106 (2011).

13.E. Karapınar, U. Yüksel, On common fixed point theorems without commuting conditions in tvs-cone metric spaces, J. Comput. Anal. Appl., 13 (6), 1115-1122 (2011).

14.M. Abbas, M. Jovanovic and S. Radenovic, Abstract metric spaces and approximating fixed point of a pair of contractive mappings, J. Comput. Anal. Appl., 13 (2), 243-253 (2011).

15.M. S. Chauhan and Bharat Singh, Fixed point theorem in intiutionistic 3 metric space using weak compatibility, International J. Engineering and Technology, 3 (2) 144-150 (2011).

16.R. Pant, R. Mohan and P. K. Mishra, Some common fixed point theorems in cone metric spaces, Inter. J. Sci. Tecnology and Management, 2, 47-56, 2011

17.T. Abdeljawad, Order norm comletions of cone metric spaces, Numerical Fonk. Anal. And Optimization, 32, 5, 477- 495 (2011). (SCI)

18.T. Abdeljawad, Completion of TVS-cone metric spaces and some fixed point theorems, GUJ Sci.,  24(2), 235-240 (2011).

19.S. Simic, A note on Stone’s, Baire’s, Ky Fan’s and Dugundji’s theorem in tvs- cone metric spaces, Appl. Math. letters, 24, 6, 999-1002 (2011). (SCI)

20.E. Karapınar, Fixed point theory for cyclic weak - contraction, Appl. Math. Letters,  24, 6, 822–825 (2011). (SCI)

21.S. Radojevic, L Paunovic and S. Radonevic, Abstract metric spaces and Hardy-Rogers- type theorems, Appl. Math. Letters, 24, 4 553-558 (2011). (SCI)

22.I. Altun and C. Çevik, Some common fixed point theorems in vector metric spaces, Filomat, 25(1), 105-113 (2011). (SCI)

23.N. V. Luong and N. Xuan Thuan, Common fixed point theorem in compact D*- Metric spaces, Internat. Math. Forum, 6, 13, 605-612 (2011).

24.S. Salehian, A fixed point theorem for  contraction mappings in metric and D metric spaces, Research J. Appl. Sci. Engineering and Techonolgy, 3(2), 110-112 (2011).

25.G. M. Jay and M. L. Joshi, Common fixed pointfor weakly compatible mappings in Menger spaces, Internat. J. Computer  appl., 12 , 11-25 (2011).

26.N. Malviya, Proving fixed point theorems using general principles in cone Banach spaces, Internat. Math. forum, 6 (3), 115-123 (2011).

27.E. Karapınar, Couple fixed point on cone metric spaces, GU J. Sci., 24 (1), 51-58, (2011).

28.S. Jankovic, Z. Kadelburg and S. Radonovic, On cone metric spaces, Nonlinear Anal., 7, 1, 2591- 2601 (2011). (SCI)

29.D. Gopal, M. Imdad and C. Vetro, Impact of common property (E.A.) on fixed point theorems in fuzzy metric spaces, Fixed point theory and appl. (2011). (SCI)

30.P. Zangenehmehr and A. Farajzadeh, On the para-compactness of cone metric spaces, Int. J. Contempt. Math sciences,  6, 15, 707-712 (2011).

31.S. Chouhan and N. Malviya, A fixed point theorem for expansive type mappings in cone metric spaces, Internat. Math. Forum,  6, 18, 891-897 (2011).

32.Y. Guo, A generalization of Banach’s contraction prenciple for some non-obviously contractive operators in a cone metric spaces, Turk. J. Math., 35, 1-8 (2011). (SCI)

33.N. Malviya, Fixed points of asimptotically reguler mappings in cone metric spaces, Internat. Mathematical Forum, 6, 18, 881-889 (2011).

34.B. Samet and C. Vetro, An integral version of Ciric’s fixed point theorem, Mediterr J. Math. (2011). (SCI)

35.I. Altun, M. Abbas and H. Şimsek, A fixed point theorem on cone metric spaces with new type contrativity, Banach J. Math. Anal. 5, 15-24 (2011). (SCI)

36.G.V.R. Babu and P. D. Sailaja, A fixed point theorem of generalized weakly contravtive maps in orbitally complete metric spaces, Thai. J. Math. 9, 1, 1-10 (2011).

37.Kieu Phuong Chi, Tran Van An,  Dugundji’s theorem for cone metric spaces, Appl. Math. letters, 24, 387- 390 (2011). (SCI)

38.D. Easwaramoorth and R. Uthayakumar, Intiutinistic fuzzy fractal on complete and compact spaces, Control, Computation and information system, 140, 89-96 (2011).

39.M. L. Joshi and Jay G. Mehta, On common fixed point for compatible mappings in menger spaces, Int. J. Sci and Engineer. Research, 1, 3, 1-4 (2010).

40.S. Kumar and S. Kutukcu, Fixed points of expansion maps in intiutionistic fuzzy metric spaces, “ Vasile Alecsandri” University of Bacau Faculty of sciences, series mathematis and informatics, 20 (1), 119-132 (2010).

41.M. L. Joshi and G. M. Jay, On common fixed point for compatible mappings in Menger spaces, Internat. J. Science and Engineering Research, 1, 1-4 (2010).

42.S. Manro, S. Kumar and S. Sing, common fixed point theorems in intiutinistic fuzzy  metric spaces, Applied math. 1, 6, 510-514 (2010).

43.Castro Company, Francisco, Fuzzy quasi metric spaces:Bicompletion, contraction of product spaces, and applications to Access prediction, Pd.D thesis, SPAIN (2010).

44.X. Huang, C. Zhu and X Wen,  On ( g, ) – contraction in intiutionistic fuzzy metric spaces, mathematical commun. 15, 2, 425-435 (2010). (SCI)

45.X. Huang, C. Zhu and X Wen, Common fixed point theorems for families of compatible mapping in intiutinistic fuzzy metric spaces, Ann Univ Ferrara, 56, 305-326 (2010).

46.P. D. Pant , S. Kumar and S. Chauhan, Common fixe point of weakly compatible mapson intiutionistic fuzzy metric spaces, J. Advanced studies in topology, 1, 41-49 (2010).

47.M. Abbas, B. Damjanovic, R. Lazovic, Fuzzy common fixed point theorems for generalized contractive mappings,  Appl. Math. letters, 23, 1326-1330 (2010). (SCI)

48.Jankovic S, Golibovic Z, Radonovic S, Compatible and weakly compatible mapping in cone metric spaces, Mathematical and computer modelling, 52, 9-10, 1728-1738 (2010). (SCI)

49.He HM, Liu SY, Chen RD, Mann type implicit iteration approximation for multivalued mapping in Banach spaces, Fixed point theory appl. No: 140530 (2010) (SCI)

50.M. Imdad, M. Tanveer and M. Hasan, Some common fixed point theorem in menger PM spaces, Fixed point theory and appl. 2010. (SCI)

51.I. Beg and A. R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Math. commun., 15, 1, 65-76 (2010). (SCI)

52.Y Bano and R. S. Chandel, Common fixed point theorem in intiutionistic fuzzy metric space using absorbing maps, Int. J. Contemp. Math., 5, 45 2201-2209 (2010).

53.W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Computer and mathematics and with applications, 60, 8, 2508-2515 (2010).

54.C. Yıldız, S. Sharma and S. Kutukçu, on some theorems in intiutionistic fuzzy metric spaces, Missouri journal of Mathematical science, 22, 1, 44-60 (2010).

55.M. A.  Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Analysis, 73, 9, 3123-3129  (2010). (SCI)

56.M. Pavlovic, S. Radenovic and S. Radojevic, Abstract metric spaces and Seghal-Guseman-Type theorems,  Computers and mathematics with Applications, 60, 3, 865-872 (2010).

57.I. Altun, Common fixed point theorem for maps satisfying a general contractive condition integral type, Acta universtaties Apulensis, 195-206 (2010)

58.A. Sönmez and H. Çakallı, Cone normed spaces and weighted means, arxiv.org/ps. (2010).

59.P. Vijayaraju, Z.M.I  Sajath, Coincidence and fixed points of weakly conractive mapping in intiutionictic fuzzy metric spaces, International Math. Forum, 5, 42, 2049-2055 (2010).

60.Mohamed A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Nonlinear anal. (2010) (SCI).

61.E. Karapınar, Some nonunique fixed point theorems of Ciric type on cone metric spaces, Abstract and Applied Analysis (2010) (SCI)

62.E. Karapınar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Computers and Mathematics with Appl. 59, 12, 3656-3668 (2010) (SCI).

63.C. Vetro, On Branciar’s theorem for weakly compatible mappings, Appl. Math. Letters, 23, 6, 700-705, (2010) (SCI).

64.Shobha Jain, Shishir Jain, Lal Bahadur Jain, Compatibility of type (p) in modified intuitionistic fuzzy metric space, J. Nonlinear Sci. Appl. 2, 196-109, (2010).

65.A. Sonmez, On paracompactness in cone metric spaces, Appl. Math. Lett. (2010) (SCI).

66.I. Altun, H. Şimsek,  Some fixed point theorems on ordered metric spaces and application, Fixed point theory and appl. 2010 (SCI).

67.H. Efe, S. Gümüş, C. Yıldız, On category of intuitionistic fuzzy metric space, J. Comput. Anal. Appl. 12, 2, 436-443 (2010) (SCI-EXP).

68.Abdeljawad, T, Completion of cone metric spaces, Hacet. J. Math. Stat. (2010) (SCI-EXP).

69.S. Akter, A.A. Aslan, Abdeljawad T,  A fixed point theorem in generalized cone metric spaces, MCS – 491, Graduation Project, January 22, 2010.

70.C. Alaca, Fixed point results for mappings satisfying a general contractive condition of operator type in disloced fuzzy quasi-metric space, J. Comput. Anal. Appl., 12, 1-B, 361-368 (2010) (SCI-EXP).

71.Bijendra Singh and Mohit Sharma, Compatibility of Type () and Weak Compatibility in Fuzzy Metric Spaces, Applied Mathematical Sciences, 4, 719 (2010).

72.Sanjay Kumar, S. K. Garg and Ramesh Kumar Vats, Fixed Point Theorems for Coincidence Maps in Intuitionistic Fuzzy Metric Space, Int. Journal of Math. Analysis, 4, 537-545 (2010).

73.S. Kumar, R. K. Vats and V. Singh, S. K. Garg, Some common fixed point theorems in Intuitionistic fuzzy metric spaces, Int. Journal of Math. Analysis, 4, 1255-1270 (2010).

74.K. P. R. Sastry, G. V. R. Babu and M. V. R. Kameswari, Fixed points of strip-contractions, Math. commun., 14, 2, 183-192 (2009).

75.S. Kumar, R. K Vats, Common fixed points for weakly compatible  maps in Intuitionistic fuzzy metric spaces, Advance in fuzzy mathematics, 4, 1, (2009).

76.T. Abdeljewad and E. Karapınar, Quasicone metric spaces and generalizations of Caristi Kirk’s theorem, Fixed point theory and Appl. ID 574387, pp. 9 (2009) (SCI).

77.E. Karapınar, Fixed point theorems in cone Banach spaces, Fixed point theory and Appl.  ID 609281, pp. 9 ( 2009) (SCI).

78.İ. Altun, Fixed point and homotopy results for multivalued maps satisfying an implicit relation, J. Fixed point theory Appl. 2009 (SCI-EXP).

79.Mujahid Abbas, Ishak Altun, Dhananjay Gopal, Common fixed point theorems for non compatible mappings in fuzzy metric spaces,  Bulletin of Mathematical analysis and Applications, 1, 47  (2009).

80.İshak Altun, A common fixed point theorem for multivalued Ciric type mappings with new type compatibility, An. St. Univ. Ovidius Constanta,  17 (2), 19-26, (2009) ( SCI-EXP ).

81.N Van Luong, NX Thuan, A Fixed Point Theorem for ()-Weakly Contractive Mapping in Metric Spaces, Int. Journal of Math. Analysis, 4, 233 (2010).

82.Milan R. Taskovic, Transversal ordered interval and edges spaces, fixed points and applications, Mathematica Moravica, 13-1, 49-75 (2009).

83.C. Alaca, On fixed point theorem in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc., 24, 565 (2009).

84.D Qiu, L Shu, J Guan, “Common fixed point theorems for fuzzy mappings under 934;-contraction condition” , Chaos, Solitons and Fractals, , 41, 360, (2009) (SCI).

85.J Martínez-Moreno, A Roldán, C Roldán, A note on the L-fuzzy Banachs contraction principle, Chaos, Solitons and Fractals 41, 2399, (SCI), (2009).

86.S Sharma, B Deshpande, Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 40, 2242, (2009) (SCI) 

87.Liu Jie, common fixed points of weakly compatible mappings satisfying  general contractive condition of integral type, JP Journal of Fixed Point Theory and Applications, 4, 105 (2009)

88.Sushil Sharma and Bhavana Deshpande, Compatible mappings of type (I) and (II) on intuitionistic fuzzy metric spaces in consideration of common fixed point, Commun. Korean Math. Soc., 24, 197 (2009).

89.R Saadati, SM Vaezpour, YJ Cho, Quicksort algorithm: Application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, Journal of Computational and Applied Mathematics, 228, 219, (2009).

90.M. Goudarzi, SM Vaezpour, On the dfinition of fuzzy hilbert spaces and its application, The Journal of Nonlinear Science and Applications, 2, 46, (2009).

91.J Jachymski, Remarks on contractive conditions of integral type, Nonlinear Analysis, 71, 1073 (2009) (SCI).

92.I Beg, AR Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric, Nonlinear Analysis, 71, 3699 (2009) (SCI).

93.J Harjani, K Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analysis, 71, 3403 (2009) (SCI).

94.S Romaguera, P Tirado, Contraction Maps on Ifqm-spaces with Application to Recurrence Equations of Quicksort, Electronic Notes in Theoretical Computer Science, 225, 269 (2009).

95.L Yaoyao, L Qingguo, Semigroup Actions on Intuitionistic Fuzzy Metric Spaces, Advances in Fuzzy Systems, 1, 32767 (2009).

96.B. Deshpande, Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces, Choas solitons and fractals, 42, 2722 (2009) (SCI).

97.Imdad M, Ali Javid, Common fixed point theorems in symmetric spaces employing a new implicit function and common property (E.A), Bull. Belg. Math. Soc. Simon stevin, 16, 3 , 421-433 (2009) (SCI).

98.X. Huang, C. Zhu, Xi Wen, Common fixed point theorems for families of maps in complete L-fuzzy metric spaces, Filomat 23:3, 67-80 (2009) (SCI).

99.I. Altun, M. Imdad, Some fixed point theorems on ordered uniform spaces, Filomat, 23:3, (2009), 15-22 (SCI).

100.I. Beg, A. R. Butt, Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. 25, 1, 01-12 (2009) (SCI).

101.D. Mihet, A note on a common fixed point theorem in probabilistic metric spaces, Acta Math. Hungar,3, 8238 (2009) (SCI).

102.C. Alaca, A related fixed point theorem on two metric spaces satisfying a general contractive condition of integral type, Journal of computational analysis and applications, 11, 263 (2009) (SCI).

103.Y. J. Cho, S. Sedghi, N. Shobe, Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces, Choas, Solitons and Fractals, 39, 2233 (2009) (SCI).

104.T. Abdeljawad, E. Karapınar, Quasicone metric spaces and generalizations of Caristi Kirk’s theorem, Fixed point theory and Appl. ID 574387, doi:10.1155 (2009) (SCI).

105.A. Aliouche, F. Merghadi, A common fixed point theorem via a generalized contravtive condition,  Annales Mathematicae at informaticae, 36, 3-14 (2009)

106.S. Sedghi, I. Altun, N. Shobe, A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces, Applicable Analysis and Discrete Mathematics, 2 189 (2008).

107.H Bouhadjera, A Djoudi, B Fisher,A unique common fixed point theorem for occasionally weakly compatible maps, Surveys in Mathematics and its Applications, 3, 177 (2008).

108.Y. Hong, X. Fang, B. Wang, Intuitionistic Fuzzy Quasi-Metric and Pseudo-Metric Spaces, Iranian Journal of Fuzzy Systems, 5, 81 (2008) (SCI).

109.Aliouche A., B. Fisher, A related fixed point theorem for two pairs of set valued mappings on two complete metric spaces, Int. J. Appl. Math. Stat., 13, 73 (2008).

110.S Karakus, K Demirci, O Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 35, 763 (2008) (SCI).

111.SN Jesic, NA Babacev Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces, Chaos, Solitons and Fractals, 37, 675 (2008) (SCI).

112.S Rezapour Common fixed point of self-maps in intuitionistic fuzzy metric spaces, Matematicki vesnik, 60, 261 (2008).

113.T Peláez, Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric Spaces, C Matematicas, 1, 1 (2008) ( Kitap ).

114.T Kadian, R Chugh, Fixed Point Theorems for Weakly Compatible Mappings in 949;-Chainable Probabilistic Metric Spaces, International Mathematical Forum, 3, 135 (2008).

115.S Muralisankar, G Kalpana, YC Ahn, DG Park,  Semicompatiblity and fixed point theorems in intuitionistic fuzzy metric spaces, JP Journal of Fixed Point Theory and Applications, 3, 167 (2008).

116.S. Sedghi, K. P. R. Rao, N. Shobe, A general common fixed point theorem for multi-maps satisfying an implicit relation on fuzzy metric spaces, Filomat, 22, 1 (2008) (SCI).

117.M Mursaleen, SA Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41, 2414 (2008) (SCI).

118.A Aliouchea, F Merghadib, B Fisherc, Related fixed point Theorems via implicit relations of integral type, Mathematical Sciences, 1, 105 (2008).

119.R Saadati, Notes to the paper 8220;Fixed points in intuitionistic fuzzy metric spaces and its generalization, Chaos, Solitons and Fractals, 35, 176 (2008) (SCI).

120.Critiona Di Bari, C Vetro, Common Fixed Point Theorems for Weakly Compatible Maps Satisfying a General contractive condition, International Journal of Mathematics and Mathematical, 1, 32767 (2008).

121.A. Aliouche, V. Popa, Coincidence and common fixed point theorems for hybrid mappings,  Mathematica Moravica, 12-1, 1-13 (2008).

122.LB ciric, SN Jesic, JS Ume, The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 37, 781 (2008) (SCI).

123.SN Jesic, NA Babacev, Common fixed point theorems in intuitionistic fuzzy metric spaces and-fuzzy metric spaces,Chaos, Solitons Fractals, 37, 675 (2008) (SCI).

124.S. Kutukcu, C. Yildiz, A. Tuna, On common fixed points in menger probabilistic metric spaces, Int. J. Contemp. Math. Sciences, 2, 383 (2007).

125.R Chugh, S Mehra, On the Existence of a Fixed Point for Mutually Contractive Self-Mappings in Intuitionistic Generalized Fuzzy Metric Spaces, International Mathematical Forum, 2, 2875 (2007).

126.S Kutukcu, A fixed point theorem for contraction type mappings in Menger spaces, American Journal of Applied Sciences, 4, 371 (2007).

127.M. Imdad, J. Ali, A common fixed point theorem for nonself multi-maps satisfying an implicit relation, Global J. Math. Anal., 1, 74 (2007).

128.S. Kutukcu, Topics in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl., 9, 173 (2007) (SCI).

129.S Sharma, S Kutukcu, RS Rathore, Common fixed point for multivalued mappings in intuitionistic fuzzy metric spaces, Communications-Korean Mathematical, Soc., 3, 391 (2007).

130.Yisheng LAI, Coincidence and fixed points of nonlinear hybrid mappings, Bol. Soc. Mat. Mexicana, 13, 145 (2007) (SCI).

131.A Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying, Journal of Mathematical Analysis and Applications, 341, 707 (2007) (SCI).

132.S. Sedghi, N. Shobe, Common fixed point theorems for multi-valued contractions, International Mathematical Forum, 2, 1499 (2007).

133.S. Sedghi, N. Shobe, Common fixed point theorem for weakly compatible of for mappings, Commun. Korean Math. Soc., 22, 429 (2007).

134.Servet Kutukcu, A common fixed point theorm for a sequence of self maps in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc., 21, 679 (2006).

135.Servet Kutukcu, A fixed point theorem in menger spaces, International Mathematical Forum, 1, 1543 (2006).

136.V. Popa, Well-posedness of fixed point problem in orbitally complete metric spaces, Stud. Cercet. Stiint. Ser. Mat., 16, 209 (2006).

137.Aliouche, B. Fisher, A fixed point theorem for two set valued mappings on two complete metric spaces, Bull. Allahabad Math. Soc., 21, 31 (2006).

138.H. Efe, C. Yildiz, On The Hausdorff Intuitionistic Fuzzy Metric On Compact Sets, Int. J. Pure and Appl. Math., 31, 143 (2006).

139.VK Crourasia, B Fisher, Related fixed point theorems for mappings and set valued mappings on two metric spaces, International Journal of Mathematics and Mathematical sciences, 6, 35 (2006).

140.H. Efe, On t-Uniformly Continuous Mappings in Intuitionistic Fuzzy Metric On Compact Sets, Int. J. Pure and Appl. Math., 31, 143 (2006).

141.RK. Namdeo, B. Fisher, A related fixed point theorem for set valued mappings on two metric spaces, Fixed Point Theory and Applications, 6, 137 (2006) (SCI).

142.Aliouche, B. Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe J. Math. Stat., 34, 39 (2005) (SCI).

143.R. K. Namdeo, B. Fisher, Related fixed point theorems for two pairs of set valued mappings on two complete and compact metric spaces, Indian J. Math., 46, 161 (2004).

144.V Popa, Stationary points for multi-functions on two complete metric spaces, Mathematica Moravica, 8, 33 (2004).

145.R. K. Namdeo, B. Fisher, Related fixed point theorems for set valued mappings on two metric spaces, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 11, 267 (2004).

146.VK Chourasia, B Fisher, Related fixed points for two pairs of set valued mappings on two metric spaces, Hacet. J. Math. Stat., 32, 27 (2003) (SCI).

147.S. Jain, R. K. Jain, B. Fisher, Related fixed point theorems for set valued mappings on two metric spaces, Fixed point theory and Applications, 4, 49 (2003) (SCI).

148.V. Popa, C. Berceanu, On common coincidence points for mappings satisfying an implicit relation, Univ. Din Bacau Stud. cercet. Stiint. ser. Mat 13, 125 (2003).

149.V. Popa, On some fixed point theorems for multivalued mappings, Univ. Din Bacau Stud.cercet. Stiint. Ser. Mat., 13, 133 (2003).

 

 

Bilimsel Toplantı-Kongre ve Görevler

 

G1. ULUSLARARASI BİLİMSEL TOPLANTILARDA SUNULAN VE BİLDİRİ KİTABINDA (PROCEEDİNGS) BASILAN BİLDİRİLER

1. M. Sangurlu and D.Turkoglu, Some coupled fixed point theorems in partially ordered 2-metric spaces Vienna / AUSTRIA (2014).

2. Some coupled fixed point theorems in ordered fuzzy metric spaces Cankaya University , Ankara(2013)

3. G- Metrik uzaylar üzerinde tanımlı döngüsel dönüşümler ve ilgili sabit nokta teoremleri Cankaya University , Ankara(2013).

4. M. Sangurlu and D.Turkoglu, Fixed point theorems for fuzzy fi-contractive mappings in fuzzy metric spaces,  International conference on Anatolian communications in nonlinear Analysis, Abant İzzet Baysal University, Bolu, (2013)

5.Binbaşıoğlu, D ve Türkoğlu, D, Fixed point theorems for generalized contractions in ordered uniform space, AMAT 2012 - International conference on applied mathematics and approximation theory, 17-20, TOBB Üniversity, Ankara, Turkey, 2012.                                                       

6. H. Işık, D. Türkoğlu, Fixed point theorems for weakly contractive maps in partially ordered metric

spaces, Uludağ üniversity, BURSA,  TURKEY, 2012.

7. M. Sangurlu, D. Türkoğlu, Coupled fixed point theorem for commutative mappings in partially ordered metric spaces, Uludağ, BURSA, TURKEY, 2012.

8. M. Sangurlu, D. Türkoğlu, Couple fixed point theorems for mixed g-monotone mappings in partially

ordered metric spaces, International Workshop on Fixed Point Theory and Applications, Galatasaray

Univ. (2012).

9. H. Işık, D. Türkoğlu, Fixed point theorems for (psi, fi ) -weakly contractive condition in partially ordered metric spaces, International workshop on fixed point theory an applications, Galatasaray Univ. (2012).

10. Abuloha M. ve  Türkoğlu D, Fixed point theorems in hyperconvex cone metric spaces, International conference on Topology and its applications, Hacettepe University, Ankara, TURKEY, 2009

11. Abuloha M. ve  Türkoğlu D, Fixed points of mappings satisfying a new condition in cone metric spaces, Maltepe University, İstanbul, 2009

G2. ULUSAL BİLİMSEL TOPLANTILARDA SUNULAN VE BİLDİRİ KİTABINDA BASILAN BİLDİRİLER

1. Noktalar arasındaki uzaklıkları değiştiren fonksiyonlar için bazı sabit nokta teoremleri 9. Ankara matematik günleri Atılım üniversitesi Ankara(2014)

2. Kısmi sıralı metrik uzaylarda noktalar arasındaki uzaklıkları değiştiren fonksiyonlar ile bazı sabit nokta teoremleri 13. matematik sempozyumu Karabük(2014)

3. M. Sangurlu ve D. Turkoglu, Kısmi sıralı metrik uzaylarda bazı çift sabit nokta teoremleri, 8. Ankara Matematik günleri, Çankaya Universitesi, Ankara 2013.

 4. H. Işık ve D. Turkoglu, Kısmi metrik uzaylarda sabit nokta teoremleri, 7. Ankara Matematik günleri, Bilkent Universitesi, Ankara 2012.

 5. D. Türkoğlu ve Demet Binbaşıoğlu, Sıralı düzgün uzaylarda sabit nokta teoremleri, 6. Ankara Matematik günleri, Hacettepe Üniversitesi, Ankara 2011.

6.Binbaşıoğlu, D. Ve Türkoğlu, D. Fixed Point Theorems of Multivalued Monotone Mappings in Ordered Uniform Spaces, XXIII. Ulusal Matematik Sempozyumu, Kayseri, 2010.

7. Binbaşıoğlu, D, Yılmaz, Y ve Türkoğlu, D, Topolojik gruplar için farklı bir sınırlılık kavramı üzerine, 5. Ankara Matematik Günleri, TOBB-ETÜ, Ankara, 2010.

8. Abuloha M. ve Türkoğlu, Cone metric spacesfixed point theorems in diametrically contractive mappings, XXI. Ulusal Matematik Sempozyumu, Koç Üniversitesi, İstanbul, 2008.

9. Altun İ. ve Türkoğlu D, Küme değerli dönüşümler için bir sabit nokta teoremi ve integral içermelere uygulaması, XIX. Ulusal Matematik Sempozyumu, Dumlupınar Üniversitesi, Kütahya, 2006.

10. Altun İ. ve Türkoğlu D, Küme Değerli Dönüşümler İçin Bazı Sabit Nokta Teoremleri, I. Ankara Matematik Çalıştayı, Gazi Üniversitesi, Ankara, 2006.

11. Türkoğlu D,  Metrik Uzaylarda Çoğul Değerli Dönüşümlerin İki Çifti İçin Sabit Nokta Teoremleri, Mersin üniversitesi, XV. Ulusal Matematik Sempozyumu, Mersin, 2002.

12. Altun İ. ve Türkoğlu D, Tam Metrik uzaylarda İki Dönüşüm Dizisi İçin Sabit Nokta Teoremleri, Mersin Üniversitesi, XV. Ulusal Matematik Sempozyumu, Mersin, 2002.

13. Türkoğlu D,  İki Metrik Uzaylarda Çoğul Değerli Dönüşümler İçin Sabit Nokta Teoremleri, XIV. Ulusal Matematik Sempozyumu, Anadolu Üniversitesi, Eskişehir, 2001.

14. Türkoğlu D, Related Fixed Point Theorems For Set Valued Mappings On Two And Three Metric Spaces, XIII. Ulusal Matematik Sempozyumu, Sabancı Üniversitesi, İstanbul, 2000.

15. Türkoğlu D. Fisher, B. ve Özer, O, Some Theorems On Fixed Points, XII. Ulusal Matematik Sempozyumu,   İnönü Üniversitesi, Malatya, 1999.

16. Türkoğlu D, Fixed Point Theorems For Contractive Type SetValued Mappings, Kırıkkale Üniversitesi, Kırıkkale, 1997.

17. Ozer, O. ve Türkoğlu D, Metrik Uzaylar için İki Sabit Nokta Teoremi, Doğu Akdeniz Üniversitesi, Kıbrıs, 1993.

 

      H. EDİTÖRLÜK

1.Gazi University Journal of Science

Matematik Alan Editörü, 2010.

2. The journal of nonlinear sciences and applications,

(Fixed point theory and its applications)  editör kurulu üyesi

I. BİLİMSEL TOPLANTI DÜZENLEME

1. İnternational Conference of mathematical sciences, Maltepe University, İstanbul, 2009.

2. I. Ankara Matematik Çalıştayı, Gazi Üniversitesi, Ankara, 2006

 

J. YÖNETİCİLİK, KURUL VE KOMİSYON ÜYELİKLERİ İLE KOORDİNATÖRLÜK

 

9. Amasya Üniversitesi Fen Edebiyat Fakültesi Dekanı 2011-2014.

8. Amasya Üniversitesi Mimarlık Fakültesi Yönetim Kurulu Üyeliği 2012-2014.

7. Amasya Üniversitesi Eğitim Fakültesi Yönetim kurulu üyeliği 2011-2014.

6. Gazi Üniversitesi Fen Edb. Fak. Matematik Böl. Bölüm Başkan Yardımcılığı, 2002-2005.

5. Kırkkale Üniversitesi Fen Edb. Fak. Matematik Böl. Bölüm Başkan Yardımcısı, 2001-2002.

4. Kırıkkale Üniversitesi senato üyeliği, 1997-1998.

3. Kırıkkale Universitesi Keskin Meslek Yüksekokulu, Müdür, 1997 -1998.

2.  Kırıkkale Universitesi Keskin Meslek Yüksekokulu yönetim kurulu üyeliği 1997 -1998.

1. Kırıkkale Universitesi Keskin Meslek Yüksekokulu yüksekokul kurulu üyeliği 1997 -1998.

 

K. TEZ ÇALIŞMASI YÖNETME

20. Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (Doktora)

19. Sabit nokta teoremleri üzerine (Doktora) 

18. Genelleştirilmiş metrik uzaylarda sabit nokta teoremleri (Doktora) Vildan Öztürk 2015.

17. Düzgün uzaylar için sabit nokta teoremleri ( Doktora ) Demet Binbaşıoğlu, 2014.

16. Büzülme dönüşümleri  ve bazı sabit nokta teoremleri (Doktora) Nurcan Bilgili 2014.

15. Büzülme dönüşümleri için sabit nokta teorisi ve uygulamaları ( Yüksek Lisans) Hakan Şahin 2014.

14. Bazı ikili sabit nokta teoremleri ve uygulamaları  (Yüksek Lisans ) Nezakat Javashir, 2011.

13. KKM Dönüşümleri ve uygulamaları üzerine ( YüksekLisanans ) Emrah Güngör, 2011.

12. Konik metrik ve düzgün uzaylarda sabit nokta teoremleri (Yüksek Lisans) Vildan Öztürk, 2011.

11. Metrik ve Menger uzaylarda sabit nokta teoremleri (Yüksek Lisans), Erkan KİŞİ, 2010.

10. Konik metrik uzaylar da  büzülme dönüşümü ve sabit nokta teoremleri (Yüksek Lisans) Nurcan BİLGİLİ, 2010.

 9. Konik Metrik Uzaylar ve Bazı Sabit Nokta Teoremleri  ( Doktora ) Muhib ABULOHA, 2009

8. Banach Uzaylarda Genişlemeyen Dönüşümler için Sabit Nokta Teoremleri (Yüksek Lisans) Najem Abdallah MOHAMMAD, 2008.

7. Mönch Tipi Dönüşümler İçin Sabit Nokta Teoremleri ve Uygulamaları  (Yüksek Lisans) Maide Gökşin, 2008.

6. Sabit nokta teoremleri ve uygulamaları   ( Doktora ) İshak Altun, 2007.

5. Sabit Nokta Teoremlerinin Cauchy Problemine ve İntegral Denklemlere Uygulanması (Yüksek Lisans) Ahmet Akbulut, 2007.

4. Metrik ve düzgün uzaylarda sabit nokta teoremleri ( Doktora ) Hatice Aslan Hançer, 2007.

3. Fuzzy ve Probabilistik Metrik Uzaylarda Bazı Sonuçlar Üzerine, Gazi Üniversitesi (Yüksek Lisans ) Nesrin Güllüoğlu, 2005.

2. Tek Değerli ve Çoğul Değerli Dönüşümler için Sabit Nokta Teoremleri ve Lineer Olmayan İntegral Denklemlere Uygulamaları ( Yüksek Lisans ) İshak Altun, 2002.

1. Tek ve Çoğul Değerli Dönüşüm İçin Sabit Nokta Teoremleri (Yüksek Lisans ) Hatice Aslan, 2001.

 

L. EĞİTİM ÖĞRETİM

Mat 319 Genel Topolojiye Giriş I

Mat 110 Genel Matematik II, .

Mat 109 Genel Matematik I,

Mat 320 Genel Topolojiye Giriş II, 

Mat 643 Topolojik Gruplar, 

Mat 319 Genel Topolojiye Giriş I, 

Mat 317 Metrik Uzaylar, 

Mat 650 İleri Topolji, 

Mat 503 Fonksiyonel Analiz 

Mat 643 Topolojik Gruplar 

Mat 644 Düzgün Uzaylar

Mat 317 Metrik Uzaylar I

Mat 320 Genel Topolojiye Giriş II

Mat 318 Metrik Uzaylar I, 

Mat 566 Genel Topoloji II, 

Mat 517 Uygulamalı Fonksiyonel Analiz,

 

Ödül-Proje-Buluş

M. PROJE

1. Metrik ve Fuzzy Metrik Uzaylarda Sabit Nokta Teoremleri ve uygulamaları, Gazi Üniversitesi, 2006 - 2009.

2. Sabit nokta teoremleri ve uygulamaları, Gazi Üniversitesi, 2003-2004.

3. Bazı Topolojik Metodlar ve Onların Uygulamaları Sabit Nokta ve Uygulamaları Bu Sabit Noktaların Yaklaşık Olarak Bulunması, TUBİTAK, 1999-2001.

   N. ULUSLARARASI HAKEMLİK YAPTIĞI   DERGİLER

1- Fixed Point Theory and Applications (SCI)

2- Fuzzy Sets and Systems (SCI)

3- Indian Journal of Pure and Applied Mathematics (SCI)

4- Boletin de la Sociedad Matematica Mexicana (SCI)

5- Mathematical Communications ( SCI )

6- Novi Sad Journal of Mathematics,

7- International Journal of Mathematics and Mathematical Sciences

8- Indian Journal of Mathematics

9- Iranian Journal of Fuzzy Systems (SCI)

10- Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.

11. Communications in Mathematical Analysis

12. Journal Australian Mathematics

13. Mathematics and Computer Modelling ( SCI )

14. Applied Mathematics Letters ( SCI )

15. Mathematics computting and appl.

16. Tamkang Journal of Mathematics

17. Bulletin Belgium Mathematical Society ( SCI )

18. Fasciculi Mathematici

19. Abstract and applied analysis ( SCI )

20. Turkish journal of mathematics ( SCI )

21. Bulletin of the Malaysian Mathematical Sciences Society ( SCI )

22. Demonstratio Mathematica

23. Punjab University journal of Mathematics

24. Mathematic Vesnik

25. Applied Mathematics and Information Sciences ( SCI )

26. Flomat ( SCI )

27. Bulletin of the mathematical Analysis and Applications

28. Journal of Mathematical Analysis and Applications ( SCI )

29. Journal of  Natural Sciences and Mathematics

30. İtalian Journal pure and applied mathematics

   31. Kochi Journal of mathematics

   32. Journal Advanced Research in Pure Mathematics

   33. Journal of applied Mathematics ( SCI )

   34. Analele Stiintifice Ale Universitatii “ Alexandru Ioan Cuza “ Din Iaşi Matecatica 

   35. G. Univ. J. Sci.

   36. J. Adv. Math. Stud. 

N. ÖDÜLLER.

Tübitak yayın teşvik ödülleri

Gazi üniversitesi yayın teşvik ödüller

Gazi üniversitesi fen fakültesi matematik alanında en fazla yayın ödülleri

Gazi üniversitesi fen fakültesi matematik alanında en fazla atıf ödülleri